
8.311 Recitation Notes

Eric R. Anschuetz

MIT Center for Theoretical Physics,

77 Massachusetts Avenue,

Cambridge,

MA 02142,

USA∗

(Dated: February 7, 2019)

1



I. INTRODUCTION

Consider the matrix multiplication A ·B; what is this in coordinates? We have that:

(A ·B)ij =
∑
k

AikB
k
j = AikB

k
j . (1)

The dropping of the summation symbol is called the Einstein summation convention. In it,

repeated indices are denoted “dummy” indices and are summed over; all other indices are

denoted “free” indices, and give the component indices of the resulting symbol.

Some examples of common operations are:

(a⊗ b)ij = aibj, (2)

tr (A) = Ai
i, (3)

tr (A ·B) = Ai
jB

j
i , (4)

tr (A ·B ·C) = Ai
jB

j
kB

k
i . (5)

Eq. (5) makes the cyclic property of the trace manifest.

Now, let us introduce basic symbols that are the building blocks of various index manip-

ulations. An important symbol is the Kronecker delta, with components:

δij =

 1, if i = j

0, if i 6= j
; (6)

as a matrix, this is just the identity matrix.

Another important symbol is the Levi-Civita symbol, with components:

εijk =


1, if ijk = 123, 231, 312

−1, if ijk = 132, 213, 321

0, otherwise

. (7)

It is defined by its complete antisymmetry, which means it is antisymmetric upon the ex-

change of any two of its indices; that is,

εijk = −εjik = −εikj = −εkji, (8)

which also gives its cyclic property:

εijk = εjki = εkij. (9)
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The Levi-Civita symbol is important as it allows a concise description of cross products:

(A×B)i = εijkA
jBk. (10)

An important identity involving both the Kronecker delta and the Levi-Civita symbol is:

εijkε
i
nm = δjnδkm − δjmδkn. (11)

An easy way to remember the signs of this identity are that “like indices” yield a positive

sign and “cross indices” yield a negative sign.

II. CHANGING BASES

With the developed machinery, how can we transform vectors between different bases?

Consider a change of basis matrix R, defined such that when changing from a basis
{
ê(i)

}
i

to another basis
{
ê′(i)

}
i
,

ê′(i) = R j
i ê(j); (12)

componentwise,

R j
i = ê′(i) · ê(j). (13)

This gives the transformation of a vector

x = xiê(i) (14)

to a basis
{
ê′(i)

}
i

to be

x′ = (x′)
i
ê′(i) = (x′)

i
R j

i ê(j), (15)

which gives componentwise:

xj = (x′)
i
R j

i ; (16)

equivalently,

(x′)
i

= xj
(
R−1

) i

j
. (17)

As (R−1)ij = Rji (which you will show on your problem set), this can be expressed neatly

as the matrix multiplication (where x and x′ are column vectors):

x′ = R · x. (18)
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This is called a contravariant transformation law, as the transformation of vectors is done

by the inverse change of basis matrix R−1. In Einstein notation, vectors that transform

contravariantly (“contravariant vectors”) have indices “upstairs”—in matrix notation, these

are column vectors. Examples of contravariant vectors include coordinates in position and

velocity space and kets. Conversely, row vectors (“covariant vectors”) follow a covariant

transformation law:

x′ = x ·R−1. (19)

Examples of covariant vectors include the spatial gradient vector, the inverse position vector,

and bras. For completeness, scalars are considered “invariant”, as they do not transform

under changes of basis. The transformation of an object as given by Eq. (18) under a change

of basis therefore defines contravariant vectors, and similarly the transformation of an object

as given by Eq. (19) defines covariant vectors. An easy way to see that they must transform

oppositely is to consider how the inner product x ·y transforms under a change of basis; we

have that:

x′ · y′ = x ·R−1 ·R · y = x · y. (20)

That is, inner products are preserved under changes of basis; this must be true, as changes of

basis (in real space) in n-dimensions form the group O (n), which preserves inner products.

As an example, let us consider the change of basis from the standard basis

{
ê(i)

}
= {x̂, ŷ, ẑ} (21)

to the basis {
ê′(i)
}

= {cos (θ) x̂ + sin (θ) ŷ,− sin (θ) x̂ + cos (θ) ŷ, ẑ} . (22)

This is a counterclockwise rotation of the standard xy-basis about the z-axis; this is easy to

see by checking what happens when θ = π
2
. From Eq. (13), we have that

R j
i (θ) =


cos (θ) sin (θ) 0

− sin (θ) cos (θ) 0

0 0 1


j

i

. (23)

Eq. (18) then gives the general transformation law for column vectors (and generally, con-

travariant vectors) and Eq. (19) the general transformation law for row vectors (and gener-
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ally, covariant vectors). For instance, 1√
2

(x̂ + ŷ) becomes the vector:

R
(π

2

)
·


1√
2

1√
2

0

 =


1√
2

− 1√
2

0

 (24)

after a rotation of the basis vectors by π
2

counterclockwise, which is easy to check (note this

is not a rotation of the vector itself by π
2
, which would give opposite signs for the vector’s

components).

III. GENERAL TENSORS

These notions can be extended to general tensors. The general transformation law for a

general tensor is:

T
j′1...j

′
m

i′1...i
′
n

= R in
i′n

. . . R i1
i′1
T j1...jm
i1...in

(
R−1

) j′1
j1

. . .
(
R−1

) j′m
jm

; (25)

this transformation law defines tensors.
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