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I. INTRODUCTION

In class, we've discussed (or soon will discuss) the Mazwell stress tensor:
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the Poynting vector:
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These were given derivations in class, but is there a way they arise more fundamentally?

II. NOTATION

I will use the notation where Latin letters denote spatial indices, and Greek letters denote

spatial indices in addition to a time index; for instance,
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where 29 is the time(like) coordinate (i.e. t = 22°).

Furthermore, I will use the Minkowski metric
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to implicitly transform between contravariant and covariant tensors (i.e. raise and lower

indices). That is,
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For instance,
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I'll try to hide this so you can follow without it, but you’ll need it if you're following carefully.
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III. LAGRANGIAN FORMALISM OF ELECTROMAGNETISM
A. The Electromagnetic Lagrangian

Let us combine the vector potential A and the electric potential ¢ into a single four-vector

potential:
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the factor of ¢ is just an artifact of SI units. It turns out that the only Lagrangian density
describing massless A* that is consistent with quantum mechanics and special relativity is
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where F'is the electromagnetic tensor
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Using Maxwell’s equations, one can show that in terms of electric and magnetic fields:
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Equivalently,
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J" just combines the current density J and the charge density p into a single four-vector
current: i
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and charge conservation is just a statement that

" = 0.
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As Lagrangians completely define a field theory, any symmetries of the Lagrangian are

symmetries of the theory. Thus, we can naturally see that electromagnetism is gauge in-

variant; that is, £ is symmetric under ¢, : A, — A, + J,a. For instance, taking o such

that
—0,0'a = 0"A,

sets the Lorenz gauge condition

9,A" = 0.

B. Maxwell’s Equations

The Euler—Lagrange equations applied to Eq. (10) gives:
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We see that this gives rise to the Maxwell equations
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Meanwhile, Eq. (11) immediately gives rise to the Bianchi identity:
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We see that this gives rise to the Maxwell equations
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and (for i # j)
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We can also easily derive the relation between the potentials and currents we derive in
class. In the Lorenz gauge, Eq. (19) is equivalent to:
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which we inverted in class to find A and ¢ in terms of J and p.

IV. THE ELECTROMAGNETIC STRESS-ENERGY TENSOR

By Noether’s theorem, spacetime invariance gives rise to the stress-energy tensor;

Noether’s theorem gives (for J# = 0) the canonical stress-energy tensor:
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Symmetrizing 7" . . to take account of Lorentz transformations (or alternatively finding

the stress-energy tensor by varying the metric), this is equivalent to the symmetric stress-

energy tensor
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Using Eq. (11) we therefore have that:
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This immediately gives the intuition behind u, S, and o (or, alternatively, gives intuition
for the stress-energy tensor). T® = u is the energy density, 7% = £ is the momentum

density, and —T% = o;; is the stress tensor.



