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I. INTRODUCTION

This recitation will be a review of material that could appear on the first exam. The

material the exam will cover is the same as the first three problem sets, and the problems

will be in the style of those in the problem sets.

II. MAXWELL’S EQUATIONS

You should know these well by now:

∇ ·E =
ρ

ε0

, (1)

∇ ·B = 0, (2)

∇×E = −∂B
∂t

, (3)

∇×B = µ0

(
J + ε0

∂E

∂t

)
, (4)

along with the Lorentz force law:

f = ρE + J ×B, (5)

where:

f =
dF

dV
. (6)

Maxwell’s equations and the Helmholtz decomposition (see Sec. IV) give us the scalar

potential φ and the vector potential A, which satisfy:

E = −∇φ− ∂A

∂t
, (7)

B =∇×A. (8)

A is defined up to a gradient (i.e. one can take its divergence to be whatever one finds

convenient), as this term can be absorbed into the −∇φ term for E and disappears in the

curl for B. Important gauges are the Lorenz gauge, where:

∇ ·A = −ε0µ0
∂φ

∂t
, (9)
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and the Coulomb gauge, where:

∇ ·A = 0. (10)

You do not need to know the Coulomb gauge as it was not covered in the lectures, but it is

a good thing to know in general.

Finally, a useful identity to know is:

1

ε0µ0

= c2. (11)

III. STOKES’ THEOREM

Maxwell’s equations can be put into their integral forms through the use of the Kelvin–

Stokes theorem: ∫
Ω

d2a · (∇× F ) =

∮
∂Ω

dl · F (12)

and the divergence theorem: ∫
Ω

d3r∇ · F =

∮
∂Ω

d2rF · n̂. (13)

Here, Ω is some orientable manifold and ∂Ω is its boundary.

You do not need to know this for the exam, but both of these equations are special cases

of the generalized Stokes’ theorem, which can be expressed as:∫
∂Ω

ω =

∫
Ω

dω . (14)

Here, ω is a differential form and dω is the exterior derivative of ω.

IV. HELMHOLTZ DECOMPOSITION

Given the divergence and curl of a vector field F over R3, one can reconstruct F through

the formula:

F (r) = − 1

4π
∇
∫

d3r′
∇ · F (r′)

|r − r′|
+

1

4π
∇×

∫
d3r′
∇× F (r′)

|r − r′|
. (15)

From Maxwell’s equations and the Helmholtz decomposition, one finds that in Lorenz

gauge: (
∇2 − 1

c2

∂2

∂t2

)
φ = − ρ

ε0

, (16)(
∇2 − 1

c2

∂2

∂t2

)
A = −µ0J . (17)
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V. GREEN’S FUNCTIONS

To invert Eq. (16) and Eq. (17), one must find the Green’s function that satisfies:(
∇2 − 1

c2

∂2

∂t2

)
G (r, t) = δ3 (r) δ (t) . (18)

Then, the solution to: (
∇2 − 1

c2

∂2

∂t2

)
f = g (19)

is given by:

f (r, t) =

∫
dt

∫
d3r g (r′, t′)G (r − r′, t− t′) , (20)

which can be verified by taking ∇2 − 1
c2

∂2

∂t2
of both sides. It turns out that the solution to

Eq. (18) is given by:

G (r, t) = − 1

4π

δ
(
t− r

c

)
r

. (21)

Doing the time integral in Eq. (20) then finally gives the inverted equations:

φ (r, t) =
1

4πε0

∫
d3r′

ρ
(
r′, t− r′

c

)
|r − r′|

, (22)

A (r, t) =
µ0

4π

∫
d3r′

J
(
r′, t− r′

c

)
|r − r′|

. (23)

VI. CONSERVATION LAWS AND THE MAXWELL STRESS TENSOR

For a differential rate of charge creation s, we have the conservation law:

∂ρ

∂t
+∇ · J = s. (24)

For charges in electromagnetism s = 0, and we have the charge conservation law:

∂ρ

∂t
+∇ · J = 0. (25)

Similarly, for the electromagnetic energy density,

∂u

∂t
+∇ · S = −J ·E, (26)

where u is the energy density:

u =
1

2

(
ε0E

2 +
B2

µ0

)
(27)
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and S is the Poynting vector :

S =
E ×B
µ0

. (28)

This conservation law is sometimes called Poynting’s theorem. J ·E is a differential version

of the IV power dissipation you would see in Ohm’s law, and S represents differential energy

flow.

Finally, for the electromagnetic momentum density,

ε0µ0
∂S

∂t
−∇ · σ = −f , (29)

where S is once again the Poynting vector (such that the first term represents the mo-

mentum due to the force given by the energy flux given by S), −f is the local creation of

electromagnetic momentum due to the Lorentz force law as given in Eq. (5), and −σ is the

electromagnetic momentum flux, given by the Maxwell stress tensor :

σ = ε0

(
E ⊗E − E2

2
I

)
+

1

µ0

(
B ⊗B − B2

2
I

)
. (30)

In lecture, σ is denoted T ; here, I use σ to avoid confusion with the electromagnetic stress

energy tensor. You will not need to know it for the exam, but it conveniently combines the

energy density and momentum density conservation laws into a single tensor. See the notes

from the second recitation section if you want to learn more about it.
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