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I. INTRODUCTION

Today I am going to talk about the microscopic origins of Ohm’s law—namely, the Drude

model.

II. THE DRUDE MODEL IN A DC FIELD

Let us first show the “standard” Ohm’s law; namely, given a static potential difference

V and resistance R in a circuit, the current I satisfies the relation:

V = IR. (1)

To see this, let us consider an electron bouncing against stationary ions in a wire. Assume

collions occur a time τ apart on average. Then, on average, the electron will have gained a

momentum:

∆ 〈p〉 = −eτE (2)

between two collisions occuring at times t− τ and t. Making ∆ 〈p〉 explicit, we have that:

〈p (t)〉 − 〈p (t− τ)〉 = −eτE (3)

for all t. Assuming forward collisions are just as likely as backwards collisions, the average

momentum immediately after a collision 〈p (t− τ)〉 = 0; therefore,

〈p (t)〉 = −eτE. (4)

As 〈p〉 = me 〈v〉 and 〈J〉 = −ene 〈v〉, we therefore have that:

J =
e2neτ

me

E. (5)

This microscopic model of resistance is called the Drude model.

Taking A to be the cross-sectional area of the wire and L the length of the circuit, we

therefore have that:

I =
e2neτA

meL
V

=⇒ V = I
meL

e2neτA
.

(6)
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Thus, in the Drude model in a DC field,

R =
meL

e2neτA
. (7)

Sometimes this is written in terms of the resistivity

ρ =
me

e2neτ
, (8)

such that:

R =
Lρ

A
. (9)

III. THE DRUDE MODEL IN AN AC FIELD

What does the Drude model predict in an AC field? To analyze this situation, let us be

more careful with the time coordinate of our DC analysis. Namely, at a time t+ dt, we have

that:

〈p〉 (t+ dt) =

(
1− dt

τ

)
(〈p〉 (t)− eE dt) , (10)

where the factor of 1− dt
τ

is the fraction of particles on average that have not collided in a

time dt (and the ones that have would contribute in a higher order of dt). This results in

the differential equation:

d 〈p〉
dt

= −
(

eE +
〈p〉
τ

)
. (11)

Considering time dependences of the form p (t) = p0e−iωt, E (t) = E0e−iωt, and J (t) =

J0e−iωt, we therefore have that:

iω 〈p0〉 = eE0 +
〈p0〉
τ

=⇒ p0 =
e

iω − 1
τ

E0

=⇒ J0 =
e2neτ

me (1− iωτ)
E0.

(12)

This recovers Eq. (5) for ω = 0.

What does the complex part of Eq. (12) tell us? From Ampère’s law (and taking B (t) =

3



B0e−iωt), we have that:

∇×B = µ0

(
J + ε0

∂E

∂t

)
=⇒ ∇×B0 = µ0

(
e2neτ

me (1− iωτ)
E0 − iε0ωE0

)
= − iω

c2

(
1 +

ie2neτ

ε0ωme (1− iωτ)

)
E0

=⇒ ∇×B = µ0ε0εr
∂E

∂t
,

(13)

where:

εr = 1 +
ie2neτ

ε0ωme (1− iωτ)
. (14)

εr is the relative permittivity, and gives the dielectric polarization density Pconductivity of the

medium to be:

Pconductivity =
ie2neτ

ωme (1− iωτ)
E. (15)

Pconductivity is the density of induced dipole moments in the medium due to the nonzero

conductivity of the material. Therefore, the Drude model predicts a particular polarization

response of conductive media in the presence of an AC electric field; experiments show that

Eq. (15) is indeed (approximately) true! It turns out the Drude model is very good at

modeling these effects, and really only begins to break down when predicting temperature

dependences due to quantum effects.
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