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I. INTRODUCTION

Today I am going to review the material that will be on your second exam. The exam will

cover the material in problem sets four, five, and six, and not include topics like relativity.

II. DIPOLE RADIATION

We recall the potentials in terms of the currents:

φ (r, t) =
1

4πε0

∫
d3r′

ρ (r′, tret (r′, t))

‖r − r′‖
, (1)

A (r, t) =
µ0

4π

∫
d3r′

J (r′, tret (r′, t))

‖r − r′‖
, (2)

where:

tret (r′, t) = t− ‖r − r
′‖

c
. (3)

For ‖r − r′‖ � ct, we can Taylor expand the currents. Assuming we have a time-varying

electric dipole p, this expansion gives:

E (r, t) =
1

4πε0

(
qn̂

r2
+

3n̂ (p (t′) · n̂− p (t′))

r3
+

3n̂ (ṗ (t′) · n̂− ṗ (t′))

cr2
+

(p̈ (t′)× n̂)× n̂
c2r

)
t′=t− r

c

,

(4)

B (r, t) =
µ0

4π

((
ṗ (t′)

r2
+
p̈ (t′)

cr

)
× n̂

)
t′=t− r

c

. (5)

The terms with no time derivatives are called the quasi-static terms, the terms with a single

time derivative the induction terms, and the terms with double time derivatives the radiation

terms. They become important in different regimes of r. The radiation term is what carries

electromagnetic energy to infinite r, giving:

P =
p̈2

6πε0c3
(6)

Repeating the same analysis for a time-varying magnetic dipole m yields:

E (r, t) = −µ0

4π

((
ṁ (t′)

r2
+
m̈ (t′)

cr

)
× n̂

)
t′=t− r

c

, (7)

B (r, t) =
µ0

4π

(
3n̂ (m (t′) · n̂−m (t′))

r3
+

3n̂ (ṁ (t′) · n̂− ṁ (t′))

cr2
+

(m̈ (t′)× n̂)× n̂
c2r

)
t′=t− r

c

.

(8)
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Once again, the radiation term is what carries electromagnetic energy to infinite r, giving:

P =
µ0m̈

2

6πc3
(9)

III. THE LIÉNARD–WIECHERT POTENTIALS

The analysis of Sec. II was done for nonrelativistic dipoles. How does the analysis change

for relativistic point charges of charge q? Doing a bunch of ugly math gives the Liénard–

Wiechert potentials :

φ (r, t) =
q

4πε0 ‖r − rq (tret)‖ (1− n̂ · β (tret))
, (10)

A (r, t) =
µ0qvq (tret)

4π ‖r − rq (tret)‖ (1− n̂ · β (tret))
, (11)

for a charge at position rq, where:

β =
vq
c
. (12)

The factors of 1
1−n̂·β you can think of as coming from special relativity, and they disappear

in the nonrelativistic limit.

Using these expressions for the potentials, one can find the expressions for the fields:

E (r, t) =
q

4πε0

 (
1− β (tret)

2) (n̂− β (tret))

‖r − rq (tret)‖2 (1− n̂ · β (tret))
3 +

n̂×
(

(n̂− β)× β̇
)

c ‖r − rq (tret)‖ (1− n̂ · β (tret))
3

 ,

(13)

B (r, t) =
1

c
(n̂×E (r, t′))t′=tret

. (14)

Calculating the power radiated away by these fields yields:

dW

dΩ dtret
=

q2

(4π)2 ε0c (1− n̂ · β)5

∥∥∥n̂× ((n̂− β)× β̇
)∥∥∥2 . (15)

IV. THE ABRAHAM–LORENTZ FORCE

When moving a charged object, the charged object interacts with the fields it generates

to create a force on itself; this is called the Abraham–Lorentz force. By calculating the fields

due to the charged object and then evaluating the resulting Lorentz force on the charged

object, one finds that:

FAL = −4UE

3c2
a+

q2

6πε0c3
ȧ, (16)
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where:

UE =
1

2

∫
d3xφ (r) ρ (r) (17)

is the energy required to assemble the charge configuration. The second of these terms can be

thought of as a radiation reaction force due to the power radiated away by the moving charge

to infinity. The first term is an electrmagnetic inertia term, which is a local phenomenon.
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